Jvc

SERVICE MANUAL COMPACT DISC AUTOMATIC CHANGER

CH-X1000 / CH-X1000RF

KS-RF37

- CH-X1000RF is a combination of CH-X1000 and KS-RF37.
- KS-RF37 is a combination of Remote control and the RF unit.

Contents

Safety precaution 1-2
Important for laser products 1-3
Location of main parts 1-4
Removal of main parts 1-5
Pickup replacement procedure 1-18
JC 12 Forced eject procedures -1-20
Troubleshooting-...
Wiring connections 1-21 1-21 1-27 1-27
Description of major ICs 1-28

Safety precaution

> $\$ CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

\triangle CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.

Important for laser products

1.CLASS 1 LASER PRODUCT

2.DANGER : Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
3.CAUTION : There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
4.CAUTION : The compact disc player uses invisible laserradiation and is equipped with safety switches whichprevent emission of radiation when the drawer is open and the safety interlocks have failed or are de feated. It is dangerous to defeat the safety switches.
5.CAUTION : If safety switches malfunction, the laser is able to function.
6.CAUTION : Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.

VARNING: Osynlig laserstrålning är denna del är öppnad och spårren är urkopplad. Betrakta ej strålen.
VARO
: Avattaessa ja suojalukitus ohitettaessa olet alttiina näkymättömälle lasersäteilylle.Älä katso säteeseen.

ADVARSEL : Usynlig laserstråling ved åbning, når sikkerhedsafbrydere er ude af funktion. Undgå udsættelse for stråling.
ADVARSEL : Usynlig laserstråling ved åpning,når sikkerhetsbryteren er avslott. unngå utsettelse for stråling.

REPRODUCTION AND POSITION OF LABELS

WARNING LABEL

DANGER : Invisibie laser radiation
when open and interlock or
defeated.
AVOID DIRECT EXPOSURE TO BEAM (e)

ADVARSEL :Usynlig laserstråling ved ảbning, nảr sikkerhedsafbrydere er ude af funktion. Undgả udsættelse for stråling.

denna del är öppnad och spárren är urkopplad. Betrakta ej strålen. (s)

VARO : Avattaessa ja suojalukitus ohitettaessa olet alttina näkymättömälle lasersäteilylle.Älä katso säteeseen. (d)

Position And Reproduction Of Labels

Name/Rating Plate
Caution.
This production contains laser component of higher laser class than Class 1.

Location of main parts

Bottom view
Main board ass'y
Mechanism ass'y wire

Top side view

Remove the main board view

Removal of Main Parts

Disassembling Procedures

Perform operations according to the items to be disassembled.

Replacement of the Pickup

1. After removing the exterior (top and bottom)...
2. Proceed to the "Pickup Replacement" section.
3. When applying grease, refer to the Exploded View.

Use new grease.

Mechanism Section

1. Remove the exterior (required section only).
2. The mechanism section is designed so that each unit can be removed separately.
3. When re-assembling, refer to the assembling precautions.
(Use new grease when applying grease.)

Exterior Section

Removing the Bottom Cover and Front Panel

 Assembly1. Remove the screw (1-a) to unlock the mounting direction knob located on the side of the main unit.
2. Turn the mounting direction knob in the direction of the arrow using a coin, etc. to remove it. (The knob can be removed only when it is set to this position.)
3. Remove the four top cover fixing screws (1) at the triangle (A) marks on the side of the main unit. (Perform the same operation on both sides.)
4. Turn the unit upside down so the bottom surface is facing upward.
5. Lift the rear edge of the bottom cover slightly and lift the side by grasping the DIN jack section on the side panel, then turn it toward the front (raise upward) to remove the bottom cover.
6. Unhook the four catches located on both sides of the front panel, and turn the front panel toward the top cover (lower down) to remove the front panel.

Fig. 4

Slightly lift the jack section to remove.

Removing the Top Cover

1. Remove the four damper bracket fixing screws (2) to remove the damper brackets.
2. Pull out the dampers, being careful not to damage them.

When re-attaching a damper, insert your finger to push out the center of the damper to mount it on the damper shaft, as shown in Fig. 6-1.
3. Turn the damper spring bracket toward the top at a right angle as shown in Fig. 7, then push down the lower side of the damper spring bracket to lift it off.
4. Remove the three fixing screws (3) and (4) on the DIN jack PCB assembly.
5. Lift the changer unit upward.
6. Remove the damper springs from the mechanism chassis if required. To reassemble, refer to the diagram below.

After

Fig. 8-1

Fig. 9

Changer Mechanism Section

Sensor Assembly Unit

1. Remove the two screws (1) securing the sensor assembly unit.
2. Unhook the springs on the back of the sensor assembly unit from the holes on the chassis.

Magazine Lock Arm

1. Remove the magazine lock spring from the front side of the chassis.
2. Remove the poly-washer (b) securing the magazine lock arm.
3. Turn the magazine lock arm in the direction of the arrow until the notch is at the " C " position to remove it from the chassis.

Positioning Motor Assembly

1. Remove the two screws (2) securing the positioning motor.
2. Slightly lift the positioning motor assembly to remove it from the two burrs on the chassis.

Fig. 14

Fig. 16

Rear Slider

1. Position the unit with the front section facing down. Rotate the third gear located on the back of the main unit in the direction of the arrow (clockwise).
2. Shift the rear slider in the direction of the arrow and remove it at the rear slider mounting position (at the widest hole).

Front Slider

1. Position the unit with the rear section facing down. Rotate the third gear located on the bottom of the unit in the direction of the arrow (clockwise) until the front slider is shifted to the outermost position.
2. Remove the E-washer securing the front slider to remove the front slider from the chassis.

Top Plate

1. Remove the nine screws (3) securing the top plate.
2. Disconnect the section (e) attached to the rear of the unit, then lift the top plate slightly.
3. Slide the top plate toward the rear of the unit to remove the upper rod from the top plate.

Fig. 19

Can be removed at the stud position

Fig. 17
Third Gear

Third gear

Fig. 18

Lifter Unit

1. Unhook the elevator spring located on the front side of the unit.
(Be sure to first unhook the spring from the lifter side as shown in the upper part of the diagram.)
2. Lift the lifter unit upward, then remove the lower rod to remove the lifter unit from the chassis.

Lifter Bracket

1. Remove the two lifter bracket fixing screws (4) located on the back of the lifter unit.
2. Remove the lower rod.

Side Bracket and Traverse Mechanism

1. Remove the two side bracket unit fixing screws (5) to disconnect the side bracket unit from the lifter unit.
2. Remove the three shafts on the traverse mechanism assembly from the lifter unit.

For reassembling, refer to the reassembling procedures.

Remove from the lifter unit

Fig. 24

Pickup Assembly

1. Remove the three mechanism PCB fixing screws (6) located on the back of the traverse mechanism.
2. Disconnect the two feed motor wires (blue and white), two spindle motor wires (red and black) and two tray motor wires (brown and black) that are soldered to the mechanism PCB assembly.
3. Short-circuit the grounding point on the mechanism PCB assembly, and lift it with the flexible PCB attached to connector CN501.
Next, short-circuit the grounding point on the pickup unit and disconnect CN501.
4. Remove the screw (7) to remove the feed motor assembly.
5. Remove the screw (8) to remove the shaft holder retaining the feed slide shaft assembly and the middle gear.
6. Remove the middle gear.
7. Move the pickup assembly upward from the gear section and remove it from the traverse chassis assembly.
8. Remove the two screws (9) to remove the rack arm.
9. Pull out the feed slide shaft assembly.
10. Remove the screw (10) to remove the spring.

Note: Before replacing the pickup, be sure to short-circuit the grounding points. First short-circuit the PCB section and

Fig. 25 then immediately short-circuit the pickup section.

Fig. 27

Tray Motor

1. Remove the two screws (11) securing the tray motor.
2. Remove the two screws (12) to remove the tray motor assembly from the tray motor holder.

Separation of the Chassis L Assembly and Chassis R Assembly

1. Remove the two screws (13) retaining the chassis "L" and "R" assemblies.
2. Slide the chassis L assembly toward the front and detach it, then remove the chassis "L" upward.

Precautions On Reassembling

When reassembling, also refer to the disassembling procedures.

Mounting the Traverse Mechanism

1. When mounting the pickup assembly, attach the feed slide shaft assembly to the traverse chassis.
Apply E-JC-525 grease to the shaft.
2. Mount the middle gear and the feed slide shaft to the traverse chassis and secure them with the screw (14) through the shaft holder.
3. Before mounting the mechanism PCB assembly, move the pickup to the outer edge position, then secure the PCB assembly using the screw (15).
At this time, check that the rest switch is correctly placed.
4. To mount the rack arm, first move the pickup to the middle position and secure it with the screws (16).

Fig. 32

Fig. 34

Mounting the Lifter unit

1. Insert the shafts (B) of the traverse mechanism assembly into the slide grooves (F) on the lifter unit.
2. Shift the hook of the lifter unit to the edge, and shift the sliding lever inside the side bracket unit to the edge as well.
3. With each hole and lever shifted to the edge, mount the lifter unit and side bracket unit from the side.
(Check each attached section, and check that the two shafts (C) of the lifter unit are correctly inserted into the holes (g) of the side bracket unit. After mounting, check that the levers move together.)
4. Turn the lifter unit upside down.

As shown in Fig. 37, slide the lever 30 mm away from the edge, then mount the lifter bracket L assembly.

Connection of the Chassis "L" Assembly and Chassis "R" Assembly

1. Attach the lower rod to the chassis "R" assembly. While shifting the rod toward the front side, mount the rod on the lifter unit.
With the rod mounted, place the lifter unit on the chassis "R" assembly.
2. Combine the chassis "L" and "R" assemblies so that the hook section (h) of the chassis "L" assembly is inserted into the notch of the chassis "R" assembly by sliding it from the front side.
3. After engaging, secure with the two screws (18).
4. Attach the tension spring between the lifter unit and the chassis.

Fig. 38

Fig. 39

Tension Spring

Mounting the Top Plate

1. Mount the upper rod on the lifter side (j) and set it on the rear of the top plate, then mount the other end of the upper rod to (k).
2. Check that the five points (l, m, n, o and p) are correctly positioned.
When mounting section (q), set it so that section (D) of the lifter unit is pinched by the bending section of the top plate.
3. Secure the top plate with six fixing screws (19).

Expanded view of mounting "q"

Fig. 43

Fig. 42

Fig. 44

Mounting the Front Slider and Rear Slider

1. Position the unit with the rear side facing down, then rotate the third gear in the direction of the arrow (clockwise) until the lift arm comes to the position at which the holes are exposed, as shown in Fig. 45-1.
2. Mount the front slider from the top.

Rotate the third gear counterclockwise until the hole of the slider is lined up with the right hole of the stud, as shown in Fig. 45-2.
3. Mount the E-washer on the shaft.
4. Position the unit with the front side facing down, then mount the rear slider. Check that the (r), (s) and (t) positions are correctly mounted as shown in Fig. 46.
5. Rotate the third gear in the direction of the arrow (counterclockwise) until the lifter unit is at the top position.

Fig. 45-2

Rotate the third gear to move the slider

Front Slider E-Washer Position so that the stud and right hole are lined up

Fig. 45-1

Rotate until the holes are lined up

Fig. 46

Mounting the Sensor PCB Assembly

1. Attach the longer spring to the white resin, and attach the shorter spring temporarily to the sensor assembly bracket.
2. Mount the sensor assembly so that the shaft of the lift arm is inserted into the longer hole on the white resin located on the back of the sensor PCB assembly.
3. Attach the shorter spring to the hook of the lift arm.

Fig. 47

Position so that the slider hole and third hole from the right are lined up

Fig. 48

Pickup Replacement Procedure

1. Remove the bottom cover, front panel and top cover from the exterior section.
2. Unplug the flexible ribbon wire from connector CN502 on the traverse mechanism PC board assembly.
3. Turn the rear slider and third gear in the lifter section counterclockwise until the traverse mechanism assembly is in the lowermost (bottom) position.
4. Unsolder the two wires (black and brown) connected to the tray motor.
5. Remove the two screws (1) from the round holes on the chassis R assembly to remove the lifter bracket (L).
6. Remove the lower rod.
7. Short-circuit the grounding point on the traverse mechanism PCB assembly of the lifter unit. Unsolder the wires connected to the spindle motor (red, black) and to the feed motor (blue, white) to lift the PCB assembly.
Next, short-circuit the grounding point on the pickup main unit and unplug the pickup flexible PCB from CN501.
8. Remove the three fixing screws (2) from the round holes on the chassis R assembly to remove the traverse mechanism PCB assembly.
9. Remove the pickup shaft holder fixing screw (3) to remove the pickup assembly.

Note: When replacing the pickup, be sure to apply countermeasures against static electricity (grounding the operation table, wrist band and soldering iron). To remove it, first short-circuit the grounding point on the mechanism PCB, then lift the mechanism PCB assembly with CN501 connected. Next, short-circuit the grounding point on the pickup main unit, then unplug the pickup flexible PCB from connector CN501.

When reassembling, perform in the reverse order.

Fig. 49

Assembly
Fig. 50

Fig. 51
10. Remove the two rack arm fixing screws (4).

Pull out the feed slide shaft.
Remove the shaft holder fixing screw (5).
11. When mounting the lifter bracket after replacing the pickup, shift the lifter unit lever approx. 30 mm towards the inside, then mount the lifter bracket.

Fig. 52

Fig. 54

JC12 Forced eject procedures

Troubleshooting

Servicing procedures for $\mathrm{CH}-\mathrm{X} 400$ \& $\mathrm{CH}-\mathrm{X} 450$ error displays

Error display	Servicing procedure		
E1: Eject error	The magazine cannot be ejected until S 601 (magazine switch) turns off. Can the magazine be ejected? YES $\rightarrow 1, \mathrm{NO} \rightarrow 2$ 1 The magazine switch (S601) does not turn off even though the magazine is completely ejected. 2 Check that the magazine is not engaged with the mechanism assembly.		
E2: Position			
motor error			The lifter does not move up and down when exchanging or ejecting discs.
:---			
After resetting, check whether or not the lifter moves. YES $\rightarrow 3$, NO $\rightarrow 4$			
3If the lifter exceeds the required disc position, check the lift position input. (IC601 pin 76)			
If the lifter does not reach the required disc position, check the mechanism (mainly the lifter			
elevation mechanism)			
4Check that voltage is present at the motor terminal.			
If voltage is present, check the lifter elevation mechanism. If voltage is not present, separate the			
motor from the circuit and check again whether or not voltage is present.			
If voltage is present, next check that the armature resistance of the position motor (resistance			
between motor terminals) is approx. 12Ω.			
If the resistance is excessively low (1-2 Ω), the motor is defective.			

	S602 \& IC601 pin (46)	S603 \& IC601 pin (45)
When opening	H	L
When closing	L	H

6Check that the drive voltage is applied to the motor terminal.
If the voltage is present, check the tray mechanism.
If the voltage is not present, separate the motor from the circuit and check again whether or not the voltage is present.

E4: Pick returning Does the feed (pickup unit) return to the inner area of the disc when ejecting?
error $\quad \mathrm{YES} \rightarrow 7, \mathrm{NO} \rightarrow 8,9$
7 Check the rest switch.
8If the feed gear is rotated, check the feed transfer mechanism
9 If the feed gear is not rotated, check the motor driver and the pattern.

Other errors occurring in the receiver or controller.
E8: Connection When selecting the CD Changer mode using function keys, etc., the unit does not enter the CD error changer mode, or the E8 error display appears. This signifies trouble relating to communications. aCheck the connection cables between the CD changer and the receiver (CD changer controller). bCheck the CD changer power cord and the fuse (including F901 on the PC board). cCheck IC651 and its peripheral circuits.

[^0]
CH-X1000 \& CX-H1000RF Error code

The following error codes can be displayed and stored in up to 3 memories when the KD-MX3000 is used with the controller. Refer to the KD-MX3000 service manual regarding error code indication.
The error code indication when using the earlier controller is the same as the $\mathrm{CH}-\mathrm{X} 99, \mathrm{KD}-\mathrm{MK} 88$ and other 12CD changer models.

CH-1 error code table

Generating condition		Description	Error code
Tray extension error	Tray-in switch time out (Tray-in switch Low, Tray-out switch High)	Tray stops part way	E1 030011
	Tray-out switch time out (Tray-in switch High, Tray-out switch High)	Tray stops part way	E1 030012
	Tray-in switch time out (Tray-in switch Low, Tray-out switch Low)	Tray-in switch faulty or other defect	E1 030013
	MAG-in switch Low to High	Magazine removed when tray partly extende	E1 030014
Tray retraction error	Tray-in switch time out (Tray-in switch Low, Tray-out switch Low)	Tray motor inoperative	E1 030016
	Tray-out switch time out (Tray-in switch High, Tray-out switch High)	Tray retraction stops part way	E1 030017
	Tray-in switch time out (Tray-in switch Low, Tray-out switch Low)	Tray-in switch faulty or other defect	E1 030018
	MAG-in switch Low to High	Magazine removed when tray partly r etracted	E1 030019
Lifter raise error	Wait position time out	Position motor inoperative	E1 020021
	Wait position time out	Position not stable in fine adjust mode	E1 020022
	Wait position time out	Other fault	E1 020023
Lifter lower error	Wait position time out	Position motor inoperative	E1 020026
	Wait position time out	Position not stable in fine adjust mode	E1 020027
	Wait position time out	Other fault	E1 020028
Chuck error	Play position time out	Position motor inoperative	E1 020031
	Play position time out	Position not stable in fine adjust mode	E1 020032
	Play position time out	Other fault	E1 020033
Unchuck error	Wait position time out	Position motor inoperative	E1 020036
	Wait position time out	Position not stable in fine adjust mode	E1 020037
	Wait position time out	Other fault	E1 020038
Eject error	Eject position time out	Position motor inoperative	E1 020041
	Eject position time out	Eject position not attained	E1 020042
	MAG in switch time out	Magazine not ejected	E1 020043
Initialize error	Mechanism switch time out	Both Tray-in and Tray-out Low	E1 030046
	Absolute position time out	Not stable at absolute position	E1 030047

Note: The 1st error code is indicated by E1, while the 2nd and 3rd error codes are respectively indicated by E2 and E3.

Flow chart for reading TOC (Table of contents)

■General section

Feed section

Focus section

Spindle section

Tracking section

-Signal processing section

CH-X1000/CH-X1000RF

Wiring connections

5
-4
4

Wiring of mechanism board section

Descriprion of major ICs

■ BA5926S(IC581):CD/POSITION/TRAY DRIVER

1.Terminal layout \& Block diagram

T.S.D: Thermal shut down circuit

D: Driver buffer
Unit of resistor:[Ω]
2.Pin function

No

No.	Symbol	Function	No.	Symbol	Function
1	OUT1-	Driver CH 1 negative output	17	OUT4-	Driver CH 4 negative output
2	OUT+	Driver CH1 positive output	18	OUT4+	Driver CH 4 positive output
3	OUT2-	Driver CH 2 negative output	19	OUT5-	Driver CH5 negative output
4	OUT2+	Driver CH2 positive output	20	OUT5+	Driver CH5 positive output
5	IN 2	Driver CH2 input	21	IN 5	Driver CH5 input
6	IN 1	Driver CH 1 input	22	IN 4	Driver CH4 input
7	VCC	Power supply	23	VCC	Power supply
8	VCC	Power supply	24	BIAS IN	Bias input
9	REG-B	Connect to external TR.BASE	25	GND	Substrate ground
10	REG OUT	Constant voltage output(5V)(*3)	26	GND	Substrate ground
11	VCC	Power supply	27	VCC	Power supply
12	IN3-R	driver CH 3 reverse input	28	IN6-R	Driver CH6 reverse input
13	IN3-F	Driver CH3 forward input	29	IN6-F	Driver CH6 forward input
14	OUT3+	Driver CH3 positive output	30	OUT6+	Driver CH6 positive output
15	OUT3-	Driver CH3 negative output	31	OUT6-	Driver CH6 negative output
16	GND	ground	32	GND	ground

Note 1) Positive output and negative output of phasing with input.
Note 2) Loading positive output and loading negative output of phasing with mode.
*3 Connect to external PNP transistor collector.

UPD780058GC-067(IC601):CPU

1.Terminal layout

| O | 80 | | 61 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | | \sim | 60 |
| 2 | | | 2 |
| 20 | | | 41 |
| | 21 | \sim | 40 |

2. Block diagram

UPD780058GC-067

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	PORT Name	I/O	Function	Active	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	PORT Name	1/O	Function	Active
1	LCDDA	O	LCD driver data output		41	NC	O	Unused output port	
2	LCDSCK	O	LCD driver clock output		42	NC	O	Unused output port	
3	LCDCE	O	LCD driver chip enable output		43	NC	O	Unused output port	
4	AVSS	-	Connect to ground		44	MAG IN	-	Magazine switch Lo:magazine inserted	L
5	ADCOUT	O	Power on Hi output. Low in stop mode.	H	45	TRAY IN	O	Tray retract switch Lo:retraction complete	L
6	NC	O	Unused output port		46	TRAY OUT	O	Tray extend switch Lo:extension complete	L
7	AVREF1	-	Connect to 5V		47	REST	1	Resr switch	L
8	NC	O	Unused output port		48	NC	O	Unused output port	
9	NC	O	Unused output port		49	EMPH	O	Emphasis select output Hi :on	H
10	CDCHECK	1	CD check mode input. Reset only.		50	NC	O	Unused output port	
11	EPROMDI	I/O	EEPROM data input		51	BUFF CONT	O	Buffer control output	L
12	EOROMDO	O	EEPROM data output. Hi durring input.		52	TEST RUN	I	Test running input	L
13	EPROMCK	I/O	EEPROM clock input/output		53	NC	O	Unused output port	
14	LED	O	Lifter LED output	H	54	NC	O	Unused output port	
15	BUS I/O	O	JVC bus input/output control(Lo:input)		55	NC	O	Unused output port	
16	BUS SI	1	JVC bus data input		56	MUTE	O	Mute output. When reverse of earlier audio	H
17	BUS SO	O	JVC bus data output					mute. Mute power OR output	
18	BUS SCK	I/O	JVC bus clock input/output		57	STAGE	I	LCD,AD key,remote inhibit selector Low:inhidit	L
19	NC	O	Unused output port		58	NC	O	Unused output port	
20	NC	O	Unused output port		59	EPROM CLF	1	EEPROM clear input Functional only dunng reset	L
21	NC	O	Unused output port		60	RESET	1	Reset input (includes flash write in function)	L
22	NC	O	Unused output port		61	REMOCON	1	Remote controller signal input	
23	NC	O	Unused output port		62	PWR DET	1	Memory power detect input	
24	NC	O	Unused output port		63	PWR SW	1	CRTL+B detect input	
25	BUSOUT	O	JVC bus output	H	64	BUS INT	1	JVC bus com start interrupt input	
26	CD ON	O	CD power control Hi:on	H	65	EJECT	1	Eject key input	
27	PWR CONT	O	Power supply control output Hi:on	H	66	NC	I	Unused output port	L
28	POSMO+	O	Position motor control output		67	VSS0	-	Connect to ground	
29	POSMO-	\bigcirc	Position motor control output		68	VDD1	-	Connect to 5V	
30	TRAYMO+	O	Tray motor control output		69	X2	O	Oscillater (4.19430 MHz)	
31	TRAYMO-	O	Tray motor control output		70	X1	1	Oscillater (4.19430 MHz)	
32	BUCK	O	CD LSI data clock		71	IC	-	Connect to ground	
33	VSS1	-	Connect to ground		72	XT2	O	Open	
34	LSI RESET	O	CD LSI reset	L	73	XT1	1	Connect to VDD	
35	CCE	O	CD LSI chip enable		74	VDD	-	Connect to 5V	
36	BUS0	I/O	CD LSI data 0(open drain)		75	AVREF0	-	Connect to ADCONT	
37	BUS1	I/O	CD LSI data 1 (open drain)		76	L SENSOR	I	Linear sensor input(8 bit A/D input)	
38	BUS2	I/O	CD LSI data 2 (open drain)		77	KEY1	1	Key input 1 (8 bit A/D input)	
39	BUS3	I/O	CD LSI data 3 (open drain)		78	KEY2	1	Key input 2 (8 bit A/D input)	
40	NC	O	Unused output port		79	KEY3	1	Key input 3 (8 bit A/D input)	
					80	KEYO	1	Key input 0 (8 bit A.D input)	

TC9462F(IC521): DSP\&DAC

1.Pin layout \& Block Diagram

2.Pin function

PIN No.	SYMBOL	I/O	FUNCTIONAL DESCRIPTION			REMARKS
1	TEST0	1	Test mode terminal.Normally, Keep at open.			With pull-up resistor.
2	HSO	0	Playback speed mode fllag output terminal.			- puruprestor
			$\overline{\text { UHSO }}$	$\overline{\mathrm{HSO}}$	PLAYBACK SPEED	
			H	H	Nomal	
	$\overline{\text { UHSO }}$	0	H	L	2 times	
			L	H	4 times	
3			L	L	--	
4	EMPH	0	Subcode Q data emphasis flag output terminal.Emphasis ON at "H" level and OFF at "L" level. The output polarity can invert by command.			--
5	LRCK	0	Channel clock output terminal.(44.1khz)L-ch at "L" level and R-ch at " H " level. the output polarity can invert by command.			--
6	VSS	--	Digital GND terminal.			--
7	BCK	0	Bit clock output terminal.(1.4122MHz)			--
8	AOUT	0	Audio data output terminal.			--
9	DOUT	0	Digital data output terminal.			--
10	MBOV	0	Buffer memory over signal output terminal. Over at "H" level.			--
11	IPF	0	Correction flag output terminal. At "H" level,AOUT output is made to correction impossibility by C 2 correction processing.			--
12	SBOK	0	Subcode Q data CRCC check adjusting result output terminal. The adjusting result is OK at " H " level.			--
13	CLCK	I/O	Subcode P~W data reabout clock input/output terminal. This terminal can select by command bit.			--
14	VDD	--	Digital power supply voltage terminal.			--
15	VSS	--	Digital GND terminal.			--
16	DATA	0	Subcode P~W data output terminal.			--
17	SFSY	0	Play-back frame sync signal output terminal.			--
18	SBSY	0	Subcode block sync signal output terminal.			--
19	SPCK	0	Processor status signal reabout clock output terminal.			--
20	SADA	0	Processor status signal output terminal.			--
21	COFS	0	Correction frame clock output terminal. (7.35kHz)			--
22	MONIT	0	Internal signal (DSP internal flag and PLL clock) output terminal. Selected by command. This terminal output the text data with serial by command.			--
23	VDD	--	Digital power supply voltage terminal.			--
24	TESIOO	1	Test input/output terminal.Normally,keep at "L" level. The terminal that inputted the clock for read of text data by command.			--
25	P2VREF	--	PLL double reference voltage supply terminal.			--

2.Pin Function

TC9462F(2/2)

Pin No.	Symbol	1/O	Function
40	RFCT	1	RFRP signal center level input terminal
41	RFZI	1	RFRP zero cross input terminal
42	RFRP	1	RF ripple signal input terminal
43	FEI	1	Focus error signal input terminal
44	SBAD	1	Sub-beam adder signal input terminal
45	TSIN	1	Test input terminal Normally, keep at "vref" level
46	TEI	1	Tracking error signal input terminal. Take in at tracking servo ON.
47	TEZI	1	Tracking error zero cross input terminal
48	FOO	0	Focus servo equalizer output terminal
49	TRO	0	Tracking servo equalizer output terminal
50	VREF	-	Analog reference voltage supply terminal
51	RFGC	0	RF amplitude adjustment control signal output terminal
52	TEBC	0	Tracking balance control signal output terminal
53	FMO	0	Feed equalizer output terminal
54	FVO	0	Speed error signal or feed search equalizer output terminal
55	DMO	0	Disk equalizer output terminal (PWM carrier=88.2kHz for DSP, Synchronize to PXO)
56	2VREF	-	Analog double reference voltage supply terminal
57	SEL	0	APC circuit ON/OFF indication signal output terminal
58~61	FLGA~D	0	External flag output terminal for internal signal
62	VDD	-	Digital power supply voltage terminal
63	VSS	-	Digital GND terminal
64~67	1O0~3	1/O	General I/O terminal
68	DMOUT	1	This terminal control IO0~IO3 terminal
69	CKSE	1	Normally, keep at open
70	DACT	1	DAC test mode terminal. Normally, keep at open
71	TESIN	1	Test input terminal, Normally, keep at "L" level
72	TESIO1	1	Test input/output terminal. Normally, keep at "L" level
73	VSS	-	Digital GND terminal
74	PXI	1	Crystal oscillator connecting input terminal for DSP
75	PXO	0	Crystal oscillator connecting output terminal for DSP
76	VDD	-	Digital power supply voltage terminal
77	XVSS	-	Oscillator GND terminal for system clock
78	XI	1	Crystal oscillator connecting input terminal for system clock
79	XO	0	Crystal oscillator connecting output terminal for system clock
80	XVDD	-	Oscillator power supply voltage terminal for system clock
81	DVSR	-	Analog GND terminal for DA converter (Rch)
82	RO	0	R channel data forward output terminal
83	DVDD	-	Analog supply voltage terminal for DA converter
84	DVR	-	Reference voltage terminal for DA converter
85	LO	0	L channel data forward output terminal
86	DVSL	-	Analog GND terminal for DA converter (Lch)
87~89	TEST1~3	1	Test mode terminal . Normal keep at open
90~93	BUS0~3	I/O	Micon interface data input/output terminal
94	VDD	-	Digital power supply voltage terminal
95	VSS	-	Digital GND terminal
96	BUCK	1	Micon interface clock input terminal
97	CCE	1	Command and data sending/receiving chip enable signal input terminal
98	TEST4	1	Test mode terminal. Normal, keep at open
99	TSMOD	1	Local test mode selection terminal
100	RST	1	Reset signal input terminal. Reset at "L" level

TA2109F-X (IC501) : RF amp.

1. Pin layout

2. Block diagram

3. Pin function

in No.	Symbol	I/O	Pin function	Pin No.	Symbol	I/O	Pin function
1	Vcc	-	Power supply input terminal	13	SBAD	O	Sub beam adder signal output terminal
2	FNI	I	Main beam I-V amp input terminal	14	FEO	O	Focus error signal output terminal
3	FPI	I	Main beam I-V amp input terminal	15	FEN	I	FE amp negative input terminal
4	TPI	I	Sub beam I-v input terminal	16	VRO	O	Reference voltage (VREF) output terminal
5	TNI	I	Sub beam I-V input terminal	17	RFRP	O	Track count signal output terminal
6	MDI	I	Monitor photo diode amp input terminal	18	RFIS	I	RFRP detect circuit input terminal
7	LDO	O	Laser diode amp output terminal	19	RFGO	O	RF gain signal output terminal
8	SEL	I	Laser diode control signal input terminal	20	RFGC	I	RF amplitude adj. control signal input terminal
9	TEB	I	T. error balance adj. signal input terminal	21	AGCI	I	RF signal amplitude adj. amp input terminal
10	2 VRO	O	Reference voltage output terminal	22	RFO	O	RF signal output terminal
11	TEN	I	TE amp negative input terminal	23	GND	-	Ground terminal
12	TEO	O	TE error signal output terminal	24	RFN	I	RF amp negative input terminal

1-32

BR24CO1AF(IC604):EP ROM

1.Terminal Layout

2.Block Diagrram

3.Pin Function

Symbol	I/O	Function
VCC	-	Puwer Supply
GND	-	Ground(OV)
A1•A2•A3	I	Slaves Address Set(Pin)
SCL	I	Serial Clock Input
SDA	I/O	Slaves and Word Address,Serial Data Input, Serial Data Output(*)
TEST	I	Ground

(*)An open drain output requires a pull-up resistor.

HD74HC126FP-X (IC651) : Buffer

1.Terminal layout

3.Pin function

Input		Outout
C	A	Y
L	X	Z
H	L	H
H	H	L

2.Block diagram

■ IC-PST600M/G/-W1197(IC602):Reset

1.Terminal layout

2.Block diagram

1-34

VICTOR COMPANY OF JAPAN, LIMITED
MOBILE ELECTRONICS DIVISION
PERSONAL \& MOBILE NETWORK BUSINESS UNIT. 10-1,1Chome,Ohwatari-machi,Maebashi-city,Japan

[^0]: \star The E1~E8 error displays described above may appear as E-1~E-8, 1E1~1E8, R-1~R-8, or RST1~RST8, depending on the product.

